lunes, 8 de noviembre de 2010

El cerebro humano madura igual que Internet


El cerebro de un niño muy pequeño funciona como Internet en sus inicios, y el de un adolescente como una compleja y moderna red de fibra óptica.

Esto es lo que ha revelado un estudio sobre la sustancia blanca del cerebro, realizado por científicos de la Ecole Polytechnique Fédérale de Lausanne (EPFL) y de la Universidad de de Lausanne (UNIL), en Suiza, en colaboración con investigadores de la Escuela Médica de Harvard y de la Universidad de Indiana, en Estados Unidos.

Técnica aplicada

Los científicos afirman que el cerebro humano se encuentra en constante evolución. A lo largo de toda nuestra vida, las redes de fibras neuronales que conectan entre sí las diversas áreas del cerebro no dejan de aumentar en número y eficacia.

Según publica la EPFL en un comunicado, gracias a una tecnología puntera, los investigadores pudieron observar estas redes de fibras neuronales y su desarrollo, mediante la comparación de cerebros de personas de distintas edades.

La finalidad de la investigación era comprender mejor el proceso de maduración del cerebro humano, desde la más tierna infancia hasta el final de la adolescencia.

La técnica empleada, no invasiva, fue una técnica denominada tractografía de IRM, explican los científicos en la revista PNAS. Esta técnica aplica la IRM (tecnología de registro de imágenes por resonancia magnética) y analiza, con un programa informático, las imágenes registradas.

Con la tactrografía se observa, en concreto, la simetría de la difusión del agua en el cerebro: los haces de tractos de fibras hacen que el agua se difunda asimétricamente en el cerebro. Esta asimetría, denominada anisotropía, permite calcular el número de fibras en cualquier región cerebral, dado que existe una relación directa entre la cantidad de fibras y el número de anisotropía (asimetría del agua).

Novedoso programa informático

Los científicos desarrollaron el programa informático aplicado en la tractografía de IRM del presente estudio. Este software permitió realizar la cartografía de la conectividad neuronal del cerebro de los individuos estudiados.

Según explica al respecto del programa informático creado Jean-Philippe Thiran, profesor de la EPFL y director del Laboratorio de tratamiento de señales de dicha escuela: “nuestro software combina una serie de procesos: empieza con la IRM individual y culmina con la creación de un mapa personalizado de las redes de fibra que se encuentran en el cerebro”.

Para el desarrollo y utilización del sistema completo ha sido necesario todo un equipo de matemáticos, físicos, y médicos. Los resultados obtenidos demuestran que la tecnología empleada podría hacer progresar las investigaciones sobre algunos trastornos neuronales, como la epilepsia o la esquizofrenia.

Hallazgos realizados

Con las imágenes y mapas de los cerebros obtenidas por los investigadores en el presente estudio, se pudo establecer que el cerebro de un niño pequeño se parece a Internet en sus inicios, con centros aislados o mal conectados, mediante conexiones poco eficaces.

Por el contrario, el cerebro adulto, afirman los científicos, podría ser comparado con una moderna red de fibra óptica, completamente integrada.

El equipo de investigadores partió para su estudio de la hipótesis de que la sustancia blanca del cerebro, formada por los haces de neuronas que conectan las diferentes partes de éste, madura por la transformación de las conexiones frágiles neuronales en potentes “autopistas”.

Para probar esta idea, los científicos realizaron la cartografía de una treintena de personas de entre dos y 18 años de edad. Gracias a la IRM, pudieron observar el modo en que el agua se distribuía por el cerebro y, a partir de sus asimetrías (anisotropía), establecer la correspondiente densidad de las fibras neuronales de cada región cerebral.

Thiran y su colaborador, Patrick Hagmann, profesor del departamento de radiología de la UNIL, crearon una base de datos de diversas secciones transversales de las fibras neuronales y representaron sus resultados en gráficos. A partir de ellos, elaboraron después un modelo tridimensional de cada cerebro, en el que se muestran los miles de fibras que conectan las diferentes partes.

Difusión gratuita del software

Estos modelos individuales de los cerebros han dado una idea no sólo de la forma en que se desarrolla el cerebro, sino también de las diferencias estructurales existentes, por ejemplo, entre los cerebros de las personas diestras y zurdas.

Por otro lado, los científicos explican que pretenden aplicar el método al estudio de la esquizofrenia y de la epilepsia.

Por último, el sistema podría ayudar en un futuro a los neurocirujanos a conocer con mayor precisión el lugar donde deben operar para aliviar los síntomas de la epilepsia, así como establecer qué áreas es mejor evitar en el momento de la operación.

Jean-Philippe Thiran y Patrick Hagmann esperan poder poner a disposición de los hospitales del mundo el programa informático desarrollado, con libre acceso y de forma completamente gratuita, a principios del año próximo.

Consiguen mover objetos a distancias métricas utilizando sólo la luz


urante más de 40 años, los científicos han utilizado la presión de radiación, o presión ejercida sobre cualquier superficie expuesta a la radiación electromagnética, para manipular pequeños objetos en el espacio.

Esta técnica ha resultado ser una herramienta muy útil para la manipulación de partículas microscópicas, células vivas, nanopartículas y átomos, y su uso está cada vez más extendido en los campos de la biología y de la física.

Sin embargo, hasta ahora, los movimientos conseguidos habían estado siempre restringidos a escalas muy pequeñas, de varios cientos de micrómetros (un micrómetro o micra equivale a una millonésima parte de un metro), y sobre todo en líquidos.

Ahora, según publica la revista Physorg, un equipo de investigadores ha desarrollado una técnica que permite desplazar partículas en el aire, a lo largo de distancias métricas.


Por el hueco de la luz

Este avance se consiguió gracias a ciertos cambios en un sistema de atrapamiento óptico tradicional, que permite atrapar pequeñas partículas mediante presión fotónica con una pinza óptica (instrumento que emite rayos láser para proveer una fuerza atractiva o repulsiva, que permite sostener y mover físicamente objetos microscópicos).

Gracias a dichos cambios, los científicos lograron desplazar objetos de un tamaño de 100 micrómetros por un espacio de metro y medio, y con una exactitud de alrededor de 10 micrómetros.

El investigador Vladlen Shvedov y sus colaboradores de la Universidad Nacional de Australia y de la Universidad Nacional de Taurida, en Ucrania, explican en la revista Physical Review Letters cómo lograron modificar el sistema para mover objetos en el aire y otros gases a través de largas distancias.

Los investigadores incorporaron concretamente un haz con vórtice óptico (un anillo de luz con un agujero oscuro en el centro) a un sistema de atrapamiento óptico común. Para hacerlo, realizaron un corte transversal en el sistema creando una especie de “tubería” óptica, en la que el anillo lumínico actuó como “pared de tubería” repelente, atrapando a las partículas que absorbían la luz en el centro oscuro del haz y a lo largo de la “tubería”.

Además del efecto de captura, una parte de la energía de la luz y la fuerza resultante empujaron a las partículas a lo largo de la “tubería” de láser hueca.

Dos tipos de partículas

Por otro lado, con un espejo móvil, los científicos controlaron la dirección del haz, y de esta forma lograron dirigir las partículas hacia objetivos situados a más de un metro de distancia.

El movimiento de las partículas se produce porque, cuando éstas son calentadas con luz de manera no uniforme, las moléculas de aire o gas que las rodean rebotan contra su superficie a diversas velocidades, creando una fuerza que las empuja del espacio de mayor iluminación hacia el de iluminación más baja.

La manipulación óptica a larga distancia fue realizada con dos tipos de partículas: conglomerados de nanopartículas de carbono con diámetros de entre 100 nanómetros y 100 micrómetros; y microesferas de cristal vacías recubiertas de carbono, y de un diámetro de entre 50 y 100 micrómetros.

En ambos casos, las superficies de carbono hicieron que estas partículas absorbieran bien la luz, con una reflectividad extremadamente baja.

Tal y como demostraron los investigadores, la técnica permitió manipular las partículas con un alto nivel de exactitud, moviéndolas hacia objetivos situados a medio metro de distancia, en el caso de partículas de diámetros de entre 60 y 100 micrómetros.

Posibles aplicaciones

Según explica otro de los autores del estudio, Andrei Rode, de la Universidad Nacional de Australia, cuanto mayor sea la distancia por la que se desea mover las partículas, mayor potencia láser se precisa. El peligro de la tecnología, por tanto, radica en calentar demasiado las partículas e incluso quemarlas.

Por eso es importante el material del que éstas estén hechas. Con las partículas utilizadas, no sería un gran desafío conseguir que éstas se movieran incluso más de 10 metros de distancia, asegura Rode.

La manipulación óptica de partículas a través de grandes distancias puede tener diversas aplicaciones, como el transporte sin contacto de contenedores de sustancias peligrosas o sensibles, como virus, células vivas o gases.

Además, esta tecnología permitiría dirigir y agrupar nanopartículas presentes en el aire. Por último, dado que la técnica desarrollada se puede aplicar a una amplia gama de materiales, también podría usarse para estudiar partículas aerotransportadas, como los aerosoles atmosféricos y el polvo interestelar, afirman los científicos.